F E D 1 4

Software for Helical Wave Springs

for Windows

© Copyright 1999-2024 by HEXAGON Software, Kirchheim, Berlin, Neidlingen

Calculation of Helical Wave Springs

FED14 calculates helical coiled wave springs of flat spring material. Crests of the coiled waves must lay exactly on each other, therefore the number of waves per turn must always be x.5, preferred 2.5 or 3.5 or 4.5 waves. FED14 calculates spring rate, loaddeflection diagram, and bending stress for axial load of the helical wave spring Input data are inner and outer coil diameter, flat thickness, number of waves per turn, number of turns (coils), and spring length L0. FED14 calculates load and bending stress for operating length L1 and L2. Inactive end coils (unwaved) may also be considered.

Pre-Dimensioning

In Pre-Dimension, you can calculate dimensions of a helical wave spring by input of only one or two spring loads and spring deflection or stroke. By means of coil ratio, stress safety sigmaz/sigma2, block safety sc/s2 and number of waves you can modify the calculated dimensions.

Material Database

Material properties of the most important flat spring materials (tensile strength, permissible shear stress and bending stress as function of material thickness, modulus of elasticity, density) are stored in the integrated material database. The dbf file may be extended and modified by the user.

H - F	Search Search	n Next 12 /57 OK	Cancel
NAME1	NAME2	NAME3	NAME4
EN 10151-1.4310 +C19	strip X10CrNi18-8 +C1900	AISI 301	stainless steel
EN 10151-1.4568 +C17	strip X7CrNiAl17-7 +C1700	17-7 PH	stainless steel
EN 10151-1.4401 +C13	strip X5CrNiMo17-12-2 +C1300	AISI 316	stainless steel
EN 10089 38Si7	hot-rolled spring steel	1.5023	
EN 10089 55SiCr6	hot-rolled spring steel	1.7102	
EN 10089 61SiCr7	hot-rolled spring steel	1.7108	
EN 10089 55Cr3	hot-rolled spring steel	1.7176	
EN 10089 51CrV4	hot-rolled spring steel	1.8159	
EN 10089 52CrMoV4	hot-rolled spring steel	1.7701	
EN 10089 60SiCrV7	hot-rolled spring steel		
EN 1654 CuSn6 R720	CW452K-R720	2.1020.39	
EN 1654 CuZn36 R630	CW507L-R630	2.0335.39	
EN 1654 CuBe2 R1310	CW101C-R1310	2.1247.97	
EN 1654 CuCo2Be R820	CW104C-R820	2.1285.97	
EN 10132-4 C555 +QT	cold-rolled steel strip	1.1204	
EN 10132-4 CEOS +OT	cold-rolled steel strip	1.1211	

	FEC	014	- helica	wave	spring	- dei	moe.f14		_			×	
<u>F</u> ile	E	dit	View	<u>C</u> AD	STL	S <u>T</u> P	<u>D</u> atabase	D <u>o</u> cur	nent	OL	E <u>H</u> e	lp	
HEX	HEXAGON FED14- helical wave spring V2.8												
		Îtu							uluutuulu			,	
	F		1			2		3			4		
		L										4	
							<i>C</i>		~				
	ľ						Æ	17	d'h				
		L				1	MA S		11.	1			
						- //		1 N	11	11.			
		L				IN	(WN	1 h	NN'	18	1		
		L				441	1111	1	11	1/1	Ň		
	4					- (W)	IIII		111	111	11	<u>د</u> ا	
		L				- / /	MM		11	ШM	V –	3	
		L				\mathcal{I}_{c}	11111	and the second	INN	W1)	/	8	
	ľ	1					MAG			V		3	
		L					and the second		A.C.				
	4	0										۵.	
		L											
		L										- *	
	┝	1											
		L							6	DIMEN	SIONS		
										De n	nm 29	-	
	1	6							-	Di n	nm 25		
		L							ľ	L0 n	nm 10		
	,									b n	nm 2		
No all	i i	1							1	t n	nm 0,24 3.5		
and a bidde	v des	1							į	n	5		
to the	0 / 00	8	-			_			4	π	7	8[×	
11 10 10 10	Star A	1	number number	of wave	s/coil: e coils:	z = 3,5 n = 5			ŀ	Dec n Lflat n	nm 29,39 nm 599,8		
Verlage and An	With B	1	number	of inact	ive end	coils:	nE = 2		Ē	n g	2,275		
and g man	10 00	1	materia	: EN 101	51-1.43	10 +C1	9 Band X10Crl	Vi18-8 +C	1900	P0 n	nm 1,856	┥┠┋╢╎	
The contract		Name of Street	AISI 301	1 Technical rates	Federt	band N	irosta	Approval				╧┫┠╝║	
doc a on of hority	No	Ľ				_			Casarration				
A NA	or the	A.										^_ *	
Ang of Anna		1				,	lekoal wave opr	ng	43626	426			
Copy or cov	of a p							-	20	24-02-1	5 en	·	
	Ľ		1	- 24		2		3			4		
											and b		

Load-deflection diagram

FED14 calculates characteristic line of spring (loaddeflection diagram) as function of spring travel and spring length.

Goodman-Diagram

If dynamically loaded, Goodman diagram is useful to calculate fatigue strength safety and bearable load cycles of the spring.

Quick View

In Quick View, spring data and calculation results, drawings and diagrams are printed altogether on one screen.

Text Printout

Input data and calculation results with spring travel, spring length, spring load and stresses for different spring positions may be printed, saved as text or HTML file, or exported to Microsoft Excel.

Production Drawing

FED14 generates a production drawing of the helical wave spring with all dimensions. Drawing header according to ISO 7200 contains description and modifications as entered in FED14.

Spring Drawing

FED14 generates a true-scale drawing of the helical wave spring that can be exported to your CAD system as DXF or IGES file.

HEXAGON-Help System

Auxiliary text and images are available for all dialogue windows. If error messages occur, you can get description and remedy suggestion.

Interfaces

All drawings and diagrams can be saved as DXF or IGES file to be loaded with CAD programs. The OLE interface lets you import/export data from/to Excel.

Export Formats

DXF, IGES, HTML, TXT, DBF, Excel, F14.

System Requirements

FED14 is available as 32-bit app or as 64-bit app for Windows 11, Windows 10, Windows 7.

Scope of Delivery

FED14 program with database files, example applications and help images, user manual (pdf), non-expiring perpetual license.

Software Maintenance

FED14 is constantly being improved and updated. Registered users will be informed about news, and can get new versions at a reasonable update price.

Guarantee

HEXAGON gives a 24 month guarantee on full functionality of the software. We provide help and support by email without extra charge.